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A method is proposed for using relativistic dispersion relations, together with unitarity, to determine the
pion-nucleon scattering amplitude. The usual dispersion relations by themselves are not sufhcient, and we
have to assume a representation which exhibits the analytic properties of the scattering amplitude as a func-
tion of the energy and the momentum transfer. Unitarity conditions for the two reactions m+5' —+ 2r+lV'

and S+N ~ 2m will be required, and they will be approximated by neglecting states with more than two
particles. The method makes use of an iteration procedure analogous to that used by Chew and Low for the
corresponding problem in the static theory. One has to introduce two coupling constants; the pion-pion
coupling constant can be found by fitting the sum of the threshold scattering lengths with experiment. It is
hoped that this method avoids some of the formal difficulties of the Tamm-Dancoff and Bethe-Salpeter
methods and, in particular, the existence of ghost states. The assumptions introduced are justified in per-
turbation theory.

As an incidental result, we find the precise limits of the region for which the absorptive part of the scatter-
ing amplitude is an analytic function of the momentum transfer, and hence the boundaries of the region in
which the partial-wave expansion is valid.

1. INTRODUCTION

' 'N recent years dispersion relations have been used
- ~ to an increasing extent in pion physics for phe-
nomenological and semiphenomenological analyses of
experimental data, ' and even for the calculation of
certain quantities in terms of the pion-nucleon scatter-
ing amplitude. ' It is therefore tempting to ask the
question whether or not the dispersion relations can
actually replace the more usual equations of field theory
and be used to calculate all observable quantities in
terms of a finite number of coupling constants —a sug-

gestion 6rst made by Gell-Mann. ' At first sight, this
would appear to be unreasonable, since, although it is
necessary to use all the general principles of quantum

field theory to derive the dispersion relations, one does

not make any assumption about the form of the Hamil-

tonian other than that it be local and Lorentz-invariant.

However, in a perturbation expansion these require-

ments are sufFicient to specify the Hamiltonian to
within a small number of coupling constants if one

demands that the theory be renormalizable and there-

fore self-consistent. It is thus very possible that, even

without a perturbation expansion, these requirements

are sufficient to determine the theory. In fact, if the

"absorptive part" of the scattering amplitude, which

appears under the integral sign of the dispersion rela-

tions, is expressed in terms of the scattering amplitude

by means of the unitarity condition, one obtains equa-
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tions which are very similar to the Chew-Low equations
in static theory. These equations have been used by
Salzman and Salzman' to obtain the pion-nucleon
scattering phase shifts.

It is the object of this paper to find a relativistic
analog of the Chew-Low-Salzman method, which
could be used to calculate the pion-nucleon scattering
amplitude in terms of two coupling constants only. As
in the static theory, the unitarity equation will involve
the transition amplitude for the production of an
arbitrary number of mesons, and, in this. case, of nucleon
pairs as well. In order to make the equations manage-
able, it is necessary to neglect all but a finite number of
processes; as a first approximation, the "one-meson"
approximation, we shall neglect all processes except
elastic scattering.

The equations obtained from the dispersion relations
and the one-meson approximation differ from the static
Chew-Low equations in two important respects.
Whereas, in the static theory, there was only P-wave
scattering, we now have an infinite number of angular
momentum states, and the crossing relation, if ex-
pressed in terms of angular momentum states, would
not converge. Further, in the relativistic theory, the
dispersion relations involve the scattering amplitude in
the "unphysical" region, i.e., through angles whose
cosine is less than —1. For these reasons, the method
of procedure will be more involved than in the static
theory. We shall require, not only the analytic prop-
erties of the scattering amplitude as a function of energy
for fixed momentum transfer, which are expressed by
the dispersion relations, but its analytic properties as
a function of both variables. The required analytic
properties have not yet been proved to be consequences
of microscopic causality. In order to carry out the proof,

' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
e G. Salzman and F. Salzman, Phys. Rev. 108, 1619 (1957).
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one would almost certainly have to consider simul-
taneously several G-reen's functions together with the
equations connecting them which follow from uni-
tarity. It is unlikely that such a program will be carried
through in the immediate future. However, if the solu-
tion obtained by the use of these analytic properties
were to be expanded in a perturbation series, we would
obtain precisely those terms of the usual perturbation
series included in the one-meson approximation. The
assumed analytic properties are, therefore, probably
correct, at any rate in the one-meson approximation.

As we have to resort to perturbation theory in order
to justify our assumptions, we do not yet have a theory
in which the general principles of quantum theory are
supplemented only by the assumption of microscopic
causality. Nevertheless, the approximation scheme used
has several advantages over the approximations previ-
ously applied to this problem, such as the Tamm-
DancoG or Bethe-Salpeter approximations. It refers
throughout only to renormalized masses and coupling
constants. The Tamm-Danco8 equations, by contrast,
are unrenormalizable in higher approximations and the
Bethe-Salpeter equations, while they are covariant and
therefore renormalizable in all approximations, present
difficulties of principle when one attempts to solve them.
Further, we may hope that the one-meson approxima-
tion is more accurate than the Tamm-DancoG approxi-
mations. The latter assumes that those components of
the state vector containing more than a certain number
of bare mesons are negligibly small —an approximation
that is known to be completely false for the experi-
mental value of the coupling constant. The one-meson
approximation, on the other hand, assumes that the
cross section for the production of one or more real
mesons is small except at high energies. While this
approximation is certainly not quantitatively correct,
it is nevertheless probably a good deal more accurate
than the Tamm-Dancoff approximation. Finally, the
one-meson approximation, unlike the Tamm-Dancoff
or Bethe-Salpeter approximations, possesses crossing
symmetry. Now it is very probable that the "ghost
states" which have been plaguing previous solutions of
the field equations are due to the neglect of crossing
symmetry. As evidence of this, we may cite the case
of charged scalar theory without recoil, for which the
one-meson approximation has been solved completely. "
The solution obtained with neglect of the crossing term
possesses the usual ghost state if the source radius is
su%.ciently small. The Lee model, ' which has no crossing
symmetry, shows a similar behavior. If the crossing
term in the charged scalar model is included, however,
there is no ghost state.

It has been pointed out by Castillejo, Dalitz, and
Dyson7 that the dispersion relations, at any rate in the
charged scalar model, do not possess a unique solution.

' T. D. Lee and R. Serber (unpublished).
r Castillejo, Dalits, and Dyson, Phys. Rev. 101, 453 (1956).' K. W. Ford, Phys. Rev. 105, 320 (1957).

This might have been expected, since it is possible to
alter the Hamiltonian without changing the dispersion
relations. One simply has to introduce into the theory a
baryon whose mass is greater than the sum of the
masses of the meson and nucleon. Such a baryon would
be unstable, and would therefore not appear as a sepa-
rate particle or contribute a term to the dispersion
relations. In perturbation theory, the simplest of the
solutions found by Castillejo, Dalitz, and Dyson, i.e.,
the solution without any zero in the scattering ampli-
tude, agrees with the solution obtained from a Hamil-
tonian in which there are no unstable particles, and the
more complicated solutions correspond to the existence
of unstable baryons. We shall assume that this is so
independently of perturbation theory, and shall con-
cern ourselves with the simplest solution. There is no
physical reason why one of the other solutions may not
be the correct one, but it seems worthwhile to try to
compare with experiment the consequences of a theory
without unstable particles. It should in any case be
emphasized that the ambiguity is not a specific feature
of this method of solution, but is inherent in the theory
itself. The di6erence is that, in other methods, it occurs
in writing down the equations, whereas in this method
it occurs in solving them.

In Sec. 2 we shall discuss the analytic properties of
the scattering amplitude, and, in Sec. 3, we shall show
how these properties can be used together with the
unitarity condition to solve the problem. We shall in
this section ignore the "subtraction terms" in the dis-
persion relations. As in the corresponding static prob-
lem, we have to use an iteration procedure in which the
crossing term is taken from the result of the previous
iteration. The details of this solution will be entirely
diGerent from the static problem, the reason being that
the part of the amplitude corresponding to the lowest
angular momentum states, which is a polynomial in the
momentum transfer, actually appears as a subtraction
term in the dispersion relation with respect to this
variable and has thus not yet been taken into account.
In this and the next section we shall also be able to
specify details of the analytic representation that were
left undetermined in Sec. 2, in particular, we shall be
able to give precise limits to the values of the momentum
transfer within which the partial-wave expansion con-
verges. In Sec. 4 we shall investigate the subtraction
terms in the dispersion relations. We shall find that, in
order to determine them, we shall require the unitarity
condition for the lowest angular momentum states, not
only in pion-nucleon scattering, but also in the pair-
annihilation reaction %+X~ 2a., which is represented

by the same Green's function. The coupling constant
for meson-meson scattering is thus introduced into the
theory; as its value is not known experimentally it will

have to be determined by fitting one of the results of
the calculation, such as the sum of the S-wave scattering
lengths at threshold, with experiment. The calculations
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of these low angular momentum states would be done
in the same spirit as the Chew-Low calculations, and
the details will not be given in this paper. We thus
have a procedure in which the first few angular mo-
mentum states are calculated by methods similar to
those used in the static theory, while the remaining
part of the scattering amplitude, which will be called
the "residual part, " is calculated by a diRerent pro-
cedure which does not make use of a partial-wave
expansion. Needless to say, the two parts of the calcu-
lation become intermingled by the iteration procedure.

It is only in the calculation of the subtraction terms
that u-e has to be made of the unitarity condition for
the pair-annihilation reaction. For the residual part, it
is only necessary to use the unitarity condition for pion-
nucleon scattering. Had it been possible to use the
unitarity condition exactly instead of in the one-meson
approximation, the result would also satisfy the uni-
tarity condition for the annihilation reaction in a
consistent theory. As it is, we 6nd that the residual part
consists of a number of terms which correspond to
various intermediate states in the annihilation re-
action. In Sec. 5 it is pointed out that the calculation is
greatly simplified if we keep only those terms of the
residual part corresponding to pair annihilation through
states with fewer than a certain number of particles.
Such an approximation has already been made in
calculating the subtraction terms. The unitarity condi-
tion for pion-nucleon scattering is no longer satis6ed
except for the low angular momentum states. However,
the terms neglected are of the order of magnitude of,
and probably less than, terms already neglected. The
two reactions of pion-nucleon scattering and pair
annihilation are now treated on an equivalent footing.

It will be found that the unitarity condition, in the
one-meson approximation, cannot be satisfied at all
energies if crossing symmetry and the analytic proper-
ties are to be maintained. The reason is that the uni-
tarity condition for the scattering reaction is not
completely independent of the unitarity condition for
the "crossed" reaction with the two pions interchanged,
and they contradict one another if an approximation is
made. There is, of course, no difficulty in the region
where the one-meson approximation is exact. For
suKciently small values of the coupling constant, we
shall still be able to obtain a unique procedure. For
values of the coupling constant actually encountered,
one part of the crossing term may have to be cut oR at
the threshold for pair production in pion-nucleon scat-
tering. It is unlikely that the result will be sensitive to
the form and the precise value of the cuto6'.

2. DISPERSION RELATIONS AND ANALYTICITY
PROPERTIES OP THE TRANSITION

AM:PLITUDE

The kinematical notation to be used in writing down
the dispersion relations will be similar to that of Chew

et aL.' The momenta of the incoming and outgoing pions
will be denoted by q& and q2, those of the incoming and
outgoing nucleons by Pi and P2. We can then define
two invariant scalars

v = —(pi+ p2) (qi+ q2)/4M,

f= —(qi —q2) .
(2.1)

(2.2)

The latter is minus the square of the invariant mo-
mentum transfer. The laboratory energy will be given
by the equation

a) = v —(t/4M). (2.3a)

It is more convenient to use, instead of the laboratory
energy, the square of the center-of-mass energy (in-
cluding both rest-masses), which is linearly related to
it by the equation

s= M'+i12+2M(o. (2.3b)

and
2r2++1 ~ 2rl++2

%1+%2—+ 2ri+2r2.

The matrix elements for the process II can be obtained
from those for the process I by crossing symmetry; the
laboratory energy and the square of the center-of-mass
energy will now be

cv, = —v —(//4M) = —(o—(t/2M), (2.4a)

s,=M2/ p'/2M' g
= 2M'/2p' s f. (2.4b—)—

The square of the momentum transfer will be —t as
before. For the process III, the square of the center-of-
mass energy will be t. The square of the momentum
transfer between the nucleon A~ and the pion m2 will
be s, and that between the nucleon N~ and the pion
sr~ will be s.

The kinematics for the three reactions are represented
diagrammatically in Fig. It. in which t has been plotted
against v. AJ3 represents the line s= (M+p)2, or a&= p,
and lines for which s is constant will be parallel to it.
The region for which the process I is energetically
possible is therefore that to the right of AB. However,
only the shaded part of this area is the "physical re-
gion"; in the unshaded part, though the energy of the
meson is greater than its rest-mass, the cosine of the
scattering angle is not between —1 and +1. The
physical region is bounded above by the line t=0, i.e.,
the line of forward scattering, and below by the line
of backward scattering. Similarly CD is the line s,
= (M+p)2; the region for which the process II is
energetically possible is that to the left of CD, and the
shaded area represents the physical region for this

The Green's function relevant to the process under
consideration,

2ri+Xi ~ 2r2+Ã2,

also gives the processes
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reaction. Lines of constant energy for the reaction III
are horizontal lines. The reaction will be energetically
possible above the line EF, at which t=4M', and again
the shaded area represents the physical region.

We now examine the analytic properties of the
scattering amplitude. To simplify the writing, we shall
first neglect spin and isotopic spin; the transition ampli-
tude will then be a scalar function A(v, t) of the two
invariants v and t. Its analytic properties as a function
of v, with t constant, are exhibited by the usual dis-
persion relations

4

g' ( 1 1 ) 1 (" Ar(v', t)
A(v, 1) =

2M I v))—v vt)+v) or& „~(g~4sr) v' —v

—s—(t(4M) A (vI t)dv', (2.5)
QQ v v

where v~ ———(p,'/2M)+(1/4M). In this and all subse-
quent such equations, the energy denominators are
taken to have a small imaginary part. A& and A2 are
the "absorptive parts" associated with the reactions I
and II, respectively, and are given by the equations

f 4porposqorqos'l *

!(2~)'A ~(v~&)5(p)+qr —ps —
qs) = (2~) 'I

XZ(&(pr)~(qr) I ~)(~ I &(ps)~(qs)), (2 6)

(4polposqolq02) *

!(2s)'As(v, t)8(pr+qr —ps —qs) = (2a)'!

XZP (pr) ~(—qs) I ~)(~ I &(ps)~(—qr)) (2 &)

The symbol (1V(p&)s.(q&)! denotes a state with an in-

going nucleon of momentum pr and an ingoing pion of
momentum qr. The sum P„ is to be taken over all
intermediate states. A~ and A2 are nonzero to the right
of AB, and to the left of CD, respectively.

Equation (2.5) indicates that A is an analytic func-
tion of v in the complex plane, with poles at &v~, and
cuts along the real axis from p+ (t/4M) to oe and from
—~ to —p —(t/4M).

On Fig. 1, (2.5) will be represented by an integration
along a horizontal line below the v axis. The poles will

occur where this line crosses the dashed lines; apart
from them, the integrand will be zero between AB and
CD. Except for forward scattering, the region where
the integrand is nonzero will lie partly in the unphysical
region, where the energy is above threshold but the
angle imaginary.

Equation (2.5) is only true as it stands if the func-
tions A, A&, and A2 tend to zero sufficiently rapidly as
v tends to infinity; otherwise it will be necessary to
perform one or more subtractions in the usual way.
Whenever such a dispersion relation is written down,

FIG. 1. Kinematics of the reactions I, II, and III.

the possibility of having to perform subtractions is
implied.

We next wish to obtain analytic properties of A as a
function of t. In order to do this we shall write the
scattering amplitude, not as the expectation value of
the time-ordered product of the two meson current
operators between two one-nucleon states, as is done
in the proof of the usual dispersion relations, ' "but as
the expectation value of the product of a meson current
operator and a nucleon current operator between a
nucleon state and a meson state. Thus

(2porqos) *

(2~)'A5(P)+Ps qr —qs) = (2&)s!
I

s "doodx'
M )

Xs-' ~' "'(V(p)
I
&{J(x)u(x'))

I (q)), (2.&)

where a(x') is a nucleon current operator. From this
expression, we can obtain dispersion relations in which
the momentum transfer between the incoming nucleon
and the outgoing pion, rather than between the two
nucleons, is kept constant —the proof is exactly the
same as the usual heuristic proof of the ordinary dis-
persion relations. ' "As this momentum transfer is just
s„we obtain dispersion relations in which s, is kept
constant; if A is written as a function of s, and t, they

o M. L. Goldberger, Phys. Rev. 99, 979 (1955)."R.H. Capps and G. Takeda, Phys. Rev. 106, 1337 (1956).
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take the form

g2 1 t&~—»'—" A(s t')
A(s„t) = dt'—

s,+t M—' 2p-' t' —t

1 )" As(s„t')
+— dt' . (29)

7r 4„& t' t—
The absorptive parts in the integrand are as usual
obtained by replacing the time-ordered product in
(2.8) by half the commutator. The first term, in which
the operators are in the order j(x)a(a'), is exactly Ai,
and will therefore be nonzero to the right of AB and
have a 8 function along IE. The second term, however,
in which the operators are in the order a(x') j(x), will

now be related to the process III. It will be given by
the equation

(4poiposgoigos )
(2~)'As(s. ,t)&(pi+pi —p2 g2) = (2~) o!

M' )
XQ (E(pi)X(—ps)!e)(e!or (—qi) or (gs) ). (2.10)

The state e of lowest energy will now be the two-meson
state. A3 will therefore be nonzero above the line t=4p, ',
represented by GH in Fig. 1 (since t is square of the
center-of-mass energy of the process III). The dis-
persion relation (2.10) is represented by an integration
along a line parallel to CD and to the right of the line
s,=0. It implies that A is an analytic function of t for
6xed s„with a pole at t=M'+2'' s„and cuts alo—ng
the real axis from —oe to (M—p)' —s, and from 4ti'
to ~.

As in the usual dispersion relation, part of the range
of integration in Eq. (2.9) will lie in the unphysical
region. This region now includes, besides imaginary
angles at permissible energies, the entire area between
the lines t=4p2 and t=43P, where there are contribu-
tions to A3 from intermediate states with two or more
pions. The rigorous proof of (2.9) is therefore much
more dificult than that of (2.5), and probably cannot
be carried out without introducing the unitarity
equations.

By interchanging the two pions in the expression
(2.8), we can obtain a third dispersion relation in which

s is kept constant:

g2 1!-& -"'- A, (s,t')
A(s, t) = dt'

s+t—Ms —2ps m J t' —t

1 t" Ao(s, t')
+—

I dt' . (2.11)
7r~ 4~2

On Fig. 1, this would be represented by an integration
along a line parallel to AB, and to the left of the line
s=0.

Let us now try to obtain the analytic properties of A
considered as a function of two complex variables. The
simplest assumption we could make is that it is analytic
in the entire space of the two variables except for cuts
along certain hyperplanes. We can then determine the
location of the cuts from the requirement that A must
satisfy the dispersion relations (2.5), (2.9), and (2.11);
there will be a cut when s is real and greater than
(M+)a)', a cut when s, is real and greater than (M+p),
and a cut when t is real and greater than 4@2. The dis-
continuities across these cuts will be, respectively, 2A~,

2A2, and 2A3. In addition, A will have poles when
s=M2 and when s.=%2. By a double application of
Cauchy's theorem, it can be shown that a function with
cuts and poles in these positions can be represented in
the form

g' g' 1 p" t" A»(s', t')
A= + +— ds' ' dt'

M' —s M' s, 7r'" —(sr+„)~ "4„s (s' —s) (t' —t)

A so (s,', t')1
+— ds, ' dt'

(s,'—s,) (t' —t)

1
I

"
I
" Ais(s', s,')

+— ds' ' ds, ' . (2.12)
s "&sr+ )' "isr+~)' (s —s)(s. —s.)

This is a generalization of a representation first sug-
gested by Nambu. " While we have for convenience
used the three variables s, s., and t, which are the en-

ergies of the three processes, they are connected by
the relation

s+s,+t= 2 (M'+ p') (2.13)

so that A is really a function of two variables only.
A ~3, A 23 and A ~2, which will be referred to as the
"spectral functions, " are nonzero in the regions in-
dicated at the top right, top left and bottom of I'ig. 1.
The precise boundaries C~3, C23, and CI2 of the regions
will be determined by unitarity in the following sec-
tions; from the reasoning given up till now, all that
can be said is that the regions must lie within the
respective triangles as indicated, and that the boundary
must approach the sides of the triangles asymptotically
(or it could touch them at some finite point). The
spectral functions are always zero in the physical region.

As in the case of ordinary dispersion relations, the
representation (2.12) will not be true as it stands, but
will require subtractions. The subtractions will modify
one or both of the energy denominators in the usual

way and, in addition, they mill require the addition of
extra terms. These terms will not now be constants,
but functions of one of the variables, e.g., if there is a
subtraction in the s integration of the first term, the
extra term will be a function of t. These functions must
then have the necessary analytic properties in their

'" Y. Nambu, Phys. Rev. 100, 394 (1955l.
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variables, so that they will have the form

1 t'" fi(s') 1 t" fs(s, ')
ds +— ds~

)r I5 ~ (f1+v)2 S $7I ~ (sr+s)~ Sg $~

where
1 (" Ais(s, t')

Ar(s, 1) =— dt'
7l ~ t1 (s)

1 I",fs(&')
+— Ch' . (2.14)

As($„1)=— (A

1 t"
')r~ &s(~c)

A ss(s„t')

t' —t
If more than one subtraction is involved, we may have
similar terms multiplied by polynomials. Even if the
spectral functions in (2.12) tend to zero as one of the
variables tends to in6nity, so that no subtraction in
that variable is necessary, it is still not precluded that
the corresponding term in (2.14) does not appear, as
the function still has the required analytic properties.
For pion-nucleon scattering, however, there is no un-
determined over-all term, independent of both variables,
to be added, as the requirement that the scattering
amplitude for each angular momentum wave have the
form e's sin8/k, with Im5(0, forces A to tend to zero
in the physical region when both s and t become infinite.

The Nambu representations for the complete Green's
functions are known to be invalid, even in the lowest
nontrivial order of perturbation theory. The representa-
tion quoted here, however, restricts itself to the mass
shells of the particles, and has not been shown to be
invalid. In fact, in the case of Compton scattering, the
fourth-order terms, which have been worked out by
Brown and Feynman, " are found to have this repre-
sentation, and, as we have stated in the introduction,
all the perturbation terms included in the one-meson

approximation can be similarly represented.
The dispersion relations are an immediate conse-

quence of the representation (2.12). To obtain the
usual dispersion relation (2.5), the third integral in

(2.12) must be written as"

Equation (2.15) is, however, just the dispersion relation
(2.5), since s, s„and v are connected by the relations
(2.4) and) is being kept constant. We also see that the
absorptive parts A& and A2 themselves satisfy disper-
sion relations in f, with s (or s,) constant; the imaginary
parts which appear in the integrand are now simply the
spectral functions. Equation (2.16) will be represented
in Fig. 1, by an integration along a line parallel to AB
and to the right of it. The limits t~ and t2 are the points
at which this line crosses the curves C» and C». They
satisfy the inequalities

ty) 4P~

fs((M —p)' —s.

(2.18a)

(2.18b)

1 t" Ars(v', 1) 1 (
—"&(') Ass(v')t)

gran y3(t) VI —V 7r~ „ V V

Ai will be nonzero for s) (M+p)s, as it should, as long
as the curves C~3 and C~~ approach the line AB at
some point and do not cross it.

The dispersion relations (2.9) and (2.11) can be
proved from (2.12) in a similar way; the absorptive
part A3 will then satisfy a dispersion relation in v with
s constant:

(M+ p, ) —oo

A rs(s', 1')
dt'

(s' —s) (1'—t)

t' &s( c) A rs(s~'~1')
ds' dt'

vr'& ()L(~„)* ~ „(s,' —s,) (1'—1)

It then follows that

g' g' 1 t" Ai(s', t)+ +— ds'
M —$3f —S~ 7l (~+&)~ S —$

1 ( " As(s, ', t)
+— ds,', (2.15)

(M+p) sc sc2 J

'~ L. M. Brown and R. P. Feynman, Phys. Rev. 85, 231 (1952).
"When we make a change of variables, we imply of course

that the spectral functions still have the same value at the same
point, and not that we must take the same function of the new
variables.

This dispersion relation will be represented by an in-
tegration along a horizontal line above GH. v3 and —va

will be the points at which the line of integration
crosses C» and C23.

Finally, then, the scattering amplitude A satisfies
dispersion relations in which any of the quantities t, s„
and s are kept constant. Further, it follows from (2.12),
by the reasoning just given, that the values of the
quantity which is being kept constant need no longer
be restricted in sign. Thus, for example, we now know
the analytic properties of A, as a function of momentum
transfer, for fixed energy greater than (as well as less
than) (M+@)'. They are given by the dispersion rela-
tion (2.11), so that A is an analytic function of the
square of the momentum transfer, with a pole at
t =M'+ 2p' —s, a,nd cuts along the real axis from
1=4)r' to oo and from t= —Qo to (M—p)' —s. For
s) (M+)a)', these cuts and poles are entirely in the
nonphysical region, It htas already been shown rigorously
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A(+) =-'(A &-:&+2A &l))

A & & = -,'(A &l& —A &:&),

(2.21a)

(2.21b)

and similar combinations 8'+') and 8( ). We then have
the simple crossing relations

by Lehmann" that A is analytic in t in an area including
the physical region. The absorptive parts A&, A2 and
A3 will themselves satisfy dispersion relations, pro-
vided that the correct variable be kept constant (s, s„
and t for A i, A s, and A s, respectively) . The weight
functions for these dispersion relations are entirely in
the nonphysical region, and the boundaries of the areas
in which they are nonzero are yet to be determined. In
particular, we see that the absorptive part A~ has the
same analytic properties as a function of the mo-
mentum transfer Lfor s constant and greater than
(M+&u)'j as the scattering amplitude, except that there
is now no pole, and the cuts only extend from t& to ~
and from —~ to t2. According to the inequalities
(2.14), these cuts do not reach as far inward as the
cuts of A considered as a function of the momentum
transfer. This agrees with another result of Lehmann'4
who showed that the region of analyticity of A & as a
function of t was larger than the region of analyticity
of A as a function of t.

The modifications introduced into the theory by
spin and isotopic spin are trivial. The transition ampli-
tude will now be given by the expression

A+-', iy(q, +q—s)B, (2.20)

and both A and 8 will have representations of the
form (2.12). There will, further, be two amplitudes
corresponding to isotopic spins of —,

' and —,'. It is some-
times more convenient to use the combinations

order to determine the scattering amplitude. Ke shall
again begin by neglecting spin and isotopic spin; the
unitarity condition (2.7) then becomes, in the one-
meson approximation,

Ai(s~ cos8i) = — sln8sd8Q@2 A ($, cos8s)
32Vr2 8"

XA(s, cos(e„e,)),
or

g pl ~2m'

Ai(s, zi) = — dzs
~

dy A*(s,zs)
32z' W"-i "o

&(A(s, z,zs+(1—zi')-'*(1—zs')l cosy), (3.1)

where z=cos8 and 8,(i=1, 2) is a unit vector in the
(8,,(&;) direction. W is the center-of-mass energy (equal
to gs), and q is the momentum in the center-of-mass
system, given by the equation

q'= (s—(M+p)'}(s (M—ti)—'}/4s. (3.2)

s is related to the momentum transfer by the simple
relation

z= 1+(t/2q') (3 3)

The unitarity requirements only prove that Kq.
(3.2) is true in the physical region. Ai must then be
obtained in the unphysical region by analytic continua-
tion. In order to do this, A can be expressed as an
analytic function of t or, equivalently, of s, by means
of Eq. (2.11), in which the energy is kept fixed. Equa-
tion (3.3) shows that we can simply replace t by z in
(2.12), so that we may write

1 r As*(S,Zs')+As*(S, Zs')
A*(s,zs) =— dzs', (3.4a)

82 S2
I

A (+) (&,t) =aA &+& (—),t),
B(+)(p t) =~B(k) ( p t)

or, in terms of the spectral functions,

(2.22a)

(2.22b)

A(s, zizs+(1 —zis)'(1 —zss)i cos&t}

A s(s,zs')+ A s (s,s,')
(3.4b)

1 r
zs' —zizs —(1—zis) —:(1—zss) —: cosy

A is'+& (s,t) =&A ss(+& (s„t), (2.23a)

A is&+) (s,s.) =&A is(+) (s„s), (2.23b)

B,s&+)(s~t)=WBss&+)(s,~t)~ (2 23c)

Biz&+) (s,s,)= %B&s&+)($.,$). (2.23d)

The poles in (2.12) and in the dispersion relations will
only occur in the representation for B&+) (in pseudo-
scalar theory), and the second term will have a minus
or plus sign in the equations for 8(+) and
respectively.

3. COMBINATION OP THE DISPERSION RELATIONS
WITH THE UNITARITY CONDITION

The dispersion relations given in the previous section
must now be combined with the unitarity equations in

'4 H. Lehmann (to be published).

For simplicity we have included the absorptive parts
A2 and A3 under the same integral sign, but they will
of course contribute in diferent regions of the variable
of integration. As(s, z) will be nonzero only if z(1—(s—(M—&u)'}/2q', apart from a 1& function at z=1—(s—Ms —2t&')/2q', and As(s, z) will be nonzero only if
z) 1+2t&'/q'. The dispersion relations have been written
down on the (incorrect) assumption that there are no
subtractions necessary; we shall see in the following
section how the theory must be modified to take them
into account.

On substituting (3.4) into (3.2) and performing the
integrations over zs and p, we are left with the equation

1 q I I
1 zi —zs'zs'+ /k

Ai($ zi) = —
I dzs ~l &Ezs —111

16irs W& ~ Qk zi —zs'zs' —Qk
X fA,*(s~zs')+As*(s~zs )}{A,(s~zs')+A, (s&zs') }~ (3 5)
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where
h =zr'+zs"+zs" —1—2z,z,'z, '. (3.6)

We must take that branch of the logarithm which is
real in the physical region —1&z&&1.Equation (3.5)
then gives the value of A ~ in the entire complex z& plane.

According to Eq. (2.16), A (s,z&) must be an analytic
function of t, and therefore of z, with discontinuities
of magnitude 2A~3 and 2A~2 as z~ crosses the positive
and negative real axes. It is easily seen that the expres-
sion for A r in (3.5) has this property, and, on identifying
the discontinuities along the real axis with A~3 and A~2,
we arrive at the equations

1
A 13($)zl) = dz2 i dzs El(zl)zs)zs)

8m' W"

X(As*(s,zs)As(s, zs)+As*(s, zs)As(s, zs)}, (3.7a)

A12($)zl) dzs dzs E2(zl)z2)zs)
Sx' 8'~

X (As*(s)z&)As(s)zs)+As*(s)zs)As(s)zs)}. (3.7b)

XE1($) tl)ts)t3)As ($)t2)A3($)ts) (3.9a)

+ i ds, s ds)s Er($; tr)s, s)s, s)As ($)s~s)As($)s, s)

A 12($ S 1)
32m'q'8'&

dts)~dsgs Es($) s,r)ts)s, s)

XLAs*(s)ts)As(s)s, s)+As*(s)s,s)As(s)ts)]. (3.9b)

Note that s is 6xed in these equations, while s, and t
vary. E must be re-expressed as a function of the new
variables by (3.3) and (2.13).

The primes on z2 and zs have been suppressed. K~ and
IC2 are defined by the equations

Er(zr, zs, zs)
= —1/Lh(zr)zs)zs)]*) zr) zszs+ (zs' —1)i(zs' —1))

, (3.8a)=0 zr&zszs+ (zs' —1)l(zs' —1)l

Es(zr, zs, zs)

=1/(h(zr, zs,zs)]', zr&zszs —(zss —1)'(zss —1)'
(3.8b)=0, zr )zszs —(zs'- —1)-:(zss—1)-:.

The points zr ——zszs&(zs' —1)i(zs' —1)' are the points
at which k changes sign.

Let us now transform back from z to our original
variables. As we shall use the dispersion relations (2.17)
and (2.19), it is convenient to express As and Ars as
functions of s and s, and A3 and A~g as functions of s
and t. Equations (3.7) then become

1
Ars(s, t) = dt2 dt3

32m'q'8' ~

The use of Eq. (3.9), together with the dispersion
relations, in order to determine the spectral functions
is greatly facilitated by the fact that E is zero unless the
variables satisfy certain inequalities; for all s,

Er(s; tr, ts ts) =0 unless tr' )tst+ts', (3.10a)

Er(s; tr, s„,s,s) =0 unless trl ) s, st+ s, '*s, (3.10b)

Es(s; S.r, ts, s,s) =0 unless s,rl) ts*'+s, sl (3.10c)

(For any particular s, the restrictions on the variables
could be strengthened. ) Equations (3.10) are true as
long as s,2, s,3, I2, and t3 are in the regions s,&M', t& 4p',
outside which As and As vanish. It follows from (3.9)
that, for any given value of t (or s,), A»(s, t) )or A»(s, s,)]
can be calculated in terrors of A (sts') artd As(s, s,'), where

the values of t' artd s,' involved are all less tham t (or s,).
On the other hand, by writing the dispersion relations
(2.17) and (2.19) in the form

1 l' Ars($ )$~)
A s(s,s)) =— ds'

7l ~ s2(ac) $ S

1 " Ass(s„t')
+— dt', (3.11a)

1 p" Ars(s', t)
A s($)t) =— ds

7l ~ s8(t) $ s

1 " A„(s',t)
+— ds', (3.11b)

7l e3(t) Sc Sc

it is evident that As(s, t) and As(s, s,) can be found in
terms of Ars(s', s,) and Ars(s', t), if for the moment we
neglect the second term in these equations. We can
therefore calculate A~3, A~2, A3, and A2 for all values
of s and successively larger values of s, and t. The
lowest value of s, or t for which either A2 or A3 is non-
zero is s.=M', at which there is a contribution of
g'8( sM') to As from the one-nucleon state. From
(3.9) and (3.10) it follows that Ars and A» are zero if t
and s, are less than 4M'; for a range of values of t
above this, A» is nonzero and can be calculated by
inserting the b-function contribution to As into (3.9a).
The rest of A2 and A3 will still not contribute owing to
(3.10). Once we have the procedure thus started, we
can proceed to larger and larger values of t and s, by
alternate application of (3.9) and (3.11)."

Before discussing how to take the second terms of
(3.11) into account, let us study in more detail the
form of the functions A~3 and A~2 calculated thus far.
In order to do this, we require the precise values of t
and s„at a given value of s, for which the kernels E
vanish; we find that

'5 It will be noticed that, though we have brought the pole in
the crossing term from the one-nucleon intermediate state into
our calculations, we have not yet introduced the pole in the direct
term. This pole is actually a subtraction term of Eq. (2.11) and
will be treated in the following section.
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FIG. 2. Properties of the spectral functions.

u = (M' —u')'/s. (3.13)

As the smallest value of s, or t which contributes to the
integrand in Eq. (3.9a) is s,=M', where A2 has a
8-function singularity, it follows from (3.12b) that the
smallest value of t for which A»(s, t) is nonzero (for any
given value of s) is given by

tl=2(M' —u)l{1+(M'—u)/4q')'*. (3 14)

For very large s, this value of t approaches 4M2, but, as
s decreases, I becomes larger and larger until, at s
= (M++)', it becomes infinite. Equation (3.14) has
been plotted as C~ in Fig. 2. A» will be nonzero above
C&, and, near it, it will behave like (t—to) ', where to is
the value of t given by (3.14). It follows from (3.11b)
that A~(s, t) is nonzero if t)4M', and behaves like
(t—4M')*' just above this limit. The value t=4M' is

Ei(s; ti, t~, t3) =0 unless

t;**)t2l(1+t3/4q') t+t3'*(1+t2/4q') l, (3.12a)

Ei(s; ti, s,2,s,a) =0 unless

ti*) (s,2
—u) {1+(s,~

—u)/4q') l

+(s,3
—u) '{1+(s,.—u)/4q') *', (3.12b)

E2(s; s.i, t2, s,3) =0 unless

(si —u) l) tp{1+(s,3
—u)/4q') l

+ (s,3
—u) l (1+t2/4q2) l (3.12c)

where

precisely the threshoM for the process III, and we
would have obtained the same results from our general
reasoning in the previous section if we had neglected
intermediate states containing two or more rnesons but
no nucleon pairs. This indicates that our assumptions
are probably correct, as we have not considered the
process III explicitly in this section. When we treat the
subtraction terms in the dispersion relations, we shall
see that A» is also nonzero between t=4p' and t=4M',
and that the region in which A» is nonzero must be
enlarged. The curve C& is therefore not yet the curve
Cga of Fig. 1.

For a range of values of t above the curve C~, the
entire contribution to the integrand in (3.9a) comes
from the 6 function in A2. At a certain point, however,
the other terms in A2 and A3 begin to contribute. If
for the moment we neglect the second term in (3.9a),
the new contribution begins at the value of t obtained
by putting t2=t3 ——4M' in (3.12a), since this is (at the
present stage of the calculation) the lowest value of t

for which A3 is nonzero. The result has been plotted
against s in Fig. 2 to give the curve C2. As this curve
approaches the line t=16M' asymptotically, there will

be a corresponding new contribution to A3 above this
value, and, near it, the new contribution will behave
like (t 16M2)-'. The v—alue t= 16M' is just the threshold
for the production of an additional nucleon pair in the
process III, and A3 would be expected to show such a
behavior at this threshold.

We find similar discontinuities in the higher deriva-
tives of Ai3 at series of curves (there will now be more
than one for each threshold) approaching asymptotically
the lines t=4e'M', so that A3 will have the expected
behavior at the thresholds for producing e nucleon pairs.

The functions A» and A2 will exhibit the same sort
of characteristics. In Eq. (3.9b), the lowest values of
t2 and s,3 which contribute to the integrand are t2=4M',
s,3——M', so that the boundary of the region in which
A» is nonzero is obtained by inserting these values
into (3.12c). The result is represented by the curve C3
in Fig. 2; it approaches the line s,=9M' as s tends to
in6nity. As with A», the region in which A» is nonzero
will be widened in the following section. From (3.19a),
it follows that A~ will (at present) be nonzero for
s,)9M, which is the threshold for pair production in
the reaction II. A» will also have discontinuities in the
higher derivatives at series of curves such as C4 which
approach asymptotically the lines s,= (2m+ 1)'M'.
Finally, it can be seen that the second term of (3.9a)
will give rise to further curves at which the higher
derivatives of A» are discontinuous, but these curves
will all approach asymptotically the lines t=4e'M'.

We must now return to the second term in the Eq.
(3.11), which we have so far neglected in the calcula-
tion. It can be taken into account by introducing the

requirement of crossing symmetry, which has not yet
been used. As in the static theory, one now has to use
an iteration procedure. The function A23, which only
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affects the crossing term in the dispersion relation (2.5),
is first neglected, and the calculation done as described.
A~3 is then found from the calculated value of A» and
the crossing-symmetry relations (2.23), and inserted
into Fq. (3.11) for the next iteration. However, the
scattering amplitude calculated by this procedure
would still not satisfy the equations of crossing sym-
metry since, while A» and A 28 are connected by (2.23a),
A» does not satisfy (2.23b). We have seen that the
dispersion relations together with the equation of
unitarity determine A» uniquely, and the result is not
a symmetric function of s and s, ; even the region in
which it is nonzero is not symmetric. It therefore ap-
pears that we cannot satisfy simultaneously the
requirements of analyticity, unitarity (in the one-meson
approximation), and crossing symmetry.

The reason why this is so is easily seen in perturbation
theory. Among the graphs included in the first iteration
of the one-meson approximation is Fig. 3(a). The
topologically similar graph Fig. 3(b) will also be in-
cluded, since Fig. 3(a) by itself would have square
roots in the energy denominators and would not have
the necessary analytic properties. If, therefore, cross-
ing symmetry is to be maintained, Fig. 3(c) must also
be included. In this graph, however, there is an inter-
mediate state of a nucleon and a pair, so that the uni-
tarity condition in the one-meson approximation is not
satisfied.

This example also indicates how we should modify
our iteration procedure. In addition to inserting a term
A23, obtained by crossing symmetry from the previous
iteration, into (3.11), we must insert a term A 12'($,$,)
equal to A12($„$) as calculated in the previous iteration.
The contribution from this term is to be added to the
contribution from A12($,$,) calculated in the normal
way. A»' will be nonzero above the curve Cs in Fig. 2,
and, in particular, it will be zero for all values of s, if s
is less than 9M'. Complete crossing symmetry is now

maintained, but the addition of A» violates the uni-

tarity condition (in the one-meson approximation) for
values of s greater than 9', and a perturbation ex-

pansion would include graphs such as Fig. 3(c). As
these graphs will appear in higher approximations, the
fact that we are forced to include them here should
not be considered a disadvantage of our method. In
any case, the unitarity condition is only violated where

the one-meson approximation is far from correct.
The iteration procedure is found to give rise to

further curves, like C2 and C4 (Fig. 2), at which the
higher derivatives of the spectral functions are dis-

continuous. These new discontinuities correspond to
the production of mesons together with nucleon pairs.
We still do not have discontinuities at all possible
thresholds.

The inclusion of the spin does not change any of the
essential features of the theory, though thp details are

r
/i

(a) (b) (c)
FIG. 3. Graphs which bring in intermediate states with pairs.

rather more complicated. Following Chew et al. ,
' we

write the pion-nucleon T matrix in the form

2'
T= — (a+48 q243. qlb),

Em
(3.15)

where E is the center-of-mass energy of the nucleon and
m that of the pion. a and b are related to the quantities
A and 8 in the expression (2.20) by the formulas

8+M (A+(W —M)Bq

2W ( 42r )
(3.16a)

E Mp A+ (W—+M—)Bq
!b=

2W ) 42r
(3.16b)

The unitarity condition corresponding to (3.7) can now
be worked out in terms of u and b; the equation ob-
tained is

a18(12) ($)zl) =Q J (fs2J (fz3 El (2) (zl)z2qs3)

S2 838]
X '! a~ ($)z2)a~(s, s3)+ t'~ (S~s2)a~($)s3)

1 s]

S3 828]
+ a *(s,s2)b (s,s8), (3.17a)

l s]

f 18(12)(Spl) Q ds2 (fs8 +1(2)(sl(z2(z3)
e ~4

~3 ~2~1 22 ~3~1
X b *(s,s2)a (s,z8)+

1 sg 1—sl2

Xa *(s,z2)t) (S,s8)+b,*(s,s2)b (s,s8) I, (3.1'7b)

where P indicates that terms of the form a *a are to
be replaced by a2*a2+al*a3 in the calculation of a)3
and b)3 and by a2*a8+a3*a2 in the calculation of a12
and b», exactly as in (3.7). a2 and b2, a, and b3, a, 2 and

b», and u» and b» are related respectively to A2 and
82, A3 and 83, A» and 8», and A» and 8» by Eqs.
(3.16). The unitarity condition (3.17) can be rewritten
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in terms of A and 8; it then becomes

g
A 13(12) (8)sl) Q d»2J d»8 It 1(2) (»1+2)»8)

~ kr2W J

f r wX!1—
E. 2S'

1—»2 —»8+»1)
!A *(s,»2)A. (s,»8)

1+si

rN 1 »2+»3 »1 Mw 1 »2 »3+»1/
+

E2 2W 1+si )
rM 1+»2 »3 »1

XA *(s,»2)B.(s,»8)+!—
)2

Mw 1—s2 —s8+»
!B.*(s,»2)A. (s,»8)

2W 1+si )

1+si

g
B13(12)(8)sl) 2 1

d»2 d»8 +1(2)(»1+2)»3)
~ 4''8'

Z 1—»2—»3+»1
A *(s,»2)A (s,»8)

MS' 1+si

r1+s,—»3—»1 E 1—s2 —s,+s
2(1—si) 2W 1+si

r 1 »2+»3
XA *(s,»2)B (s,»3)+!

W' M2 1—s—2—»3+»1
B *(s,»2)B (s,»8), (3.18a)

2$' 1 ( A)8(")(s,t') 1 I' A)2(")(s)t')
A, (")=— i dt' —— dt', (3.19)

3' —t

where A»("' and A»&"' are certainly zero below C& and
above C3, respectively, in Fig. 2. Inserting this expres-
sion into (2.5), we find that

1 (
I

A)8(")(s',t')
Ad("&=—! ds' dt'.J (s' —s) (t' —t)

1
t

(. A)2(") (s', t')
ds' ' dt' . (3.20)

(s' —s) (t' —t)

which has been proved rigorously. " The absorptive
part Ai (and hence, by crossing symmetry, A2) is
known, since it is determined by unitarity in terms of
lower order perturbation terms in the physical region,
and by analytic continuation (with s constant) out-
side it '4

(ii) For a fixed value of s, A (") is an analytic function
of the momentum transfer throughout the physical
region. '4

As the functions calculated by our method certainly
fulfil these requirements, they must generate the cor-
rect perturbation series.

However, our result does not satisfy the unitarity
condition in the one-meson approximation at all
energies, and we must examine more closely how A& is
to be determined. Let us assume that our method gives
the correct perturbation series up to the (23—1)th order.
The reasoning developed in this section then shows
that the eth-order contribution to A~ will be of the form

1+si

(w' —M')E 1—s2—s3+»1)
2MB'

!)1+si

E 1—s2—»8+»1)
!B.+(s.s.)A.(s.s.))2S"

The suffix d indicates that we are considering the direct
and not the crossing term. The second term of (3.20)
will not be an analytic function of t in the physical
region, but it will have a branch point at the largest
value of t for which A~2 is nonzero. We can make it
analytic by adding to A2 the expression

XB *(s,»2)B (s,»8) . (3.18b) 1 ( A)2(")(S. t')
(3.21)

Equations (3.17) and (3.18) will hold separately for the
amplitudes corresponding to isotopic spin —,'and —,'.

It remains to justify the claim that the result calcu-
lated by our procedure, if expanded in a perturbation
series, would give a subset of the usual perturbation
series. The proof is somewhat awkward because we
were unable to satisfy the unitarity condition in the
one-meson approximation at all values of the energy.
Let us first ignore this. The eth term in the perturbation
series A("& is then determined uniquely in the physical
region by the following two requirements:

(i) For suKciently small values of the momentum
transfer (less than 281)28(2M+88)/(2M —t8)7'}, A(")
must satisfy the dispersion relation (2.5), a result

1 t. ( A)2(")(s',s, ')
S dsc

(s' —s) (s,'—s,)
(3.22)

which is analytic in the physical region. The contribu-
tion (3.21) to A2(") is uniquely determined from the
requirement that A(") be an analytic function of the
momentum transfer in the physical region, and is
nonzero only for s,&93P. It corresponds to adding a
graph such as Fig. 3(b) to Fig. 3(a); as Ai for Fig. 3(c)

which we would expect from (2.17), if our representa-
tion is correct. By inserting this into (2.5) and adding
the result to the second term of (3.20), we obtain
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is nonzero for s) 9M', A2 for Fig. 3(b) will be nonzero
for s,&9M'.

Finally, then, the nth-order perturbation term can
be determined from the lower order perturbation terms
without using any unproved properties of the scattering
amplitude as follows:

(i) Calculate Ai by unitarity, and extend it into the
nonphysical region for momentum transfers less than
2&i/3 (2M+&i)/(2M —

&i)jl by analytic continuation.
(ii) Calculate a contribution A2q&"& to A2&"&, for

s,&9', from the requirement that if it, together with
Ai, be inserted into (2.5), the resulting function Aq&"&

must be an analytic function of the momentum transfer
in the physical region. By doing this we partially in-
clude intermediate states with nucleon pairs, which is
necessary if we are to maintain the required analytic
properties and crossing symmetry.

(iii). Now calculate A2&"& and the extra contribution
to A&("' by crossing symmetry from A&&") and the
extra contribution to A2(").

(iv) Find A &"& from (2.5) for values of the momentum
transfer less than 2pL2, (2M+&ti)/(2M —&ti)$', and calcu-
late it in the rest of the physical region by analytic
continuation in t.

This procedure de6nes a one-meson approximation in
perturbation theory. From what has been said, it is
clear that our solution will give precisely this perturba-
tion expansion, so that our assumptions are justified in
perturbation theory.

4. SUBTRACTION TERMS IN THE
DISPERSION RELATIONS

We have thus far assumed that the dispersion rela-
tions are true without any subtractions. As we have
pointed out in the first section, by doing this we neglect
what is physically the most important part of the
scattering amplitude. In this section we shall investigate
how many subtractions are necessary for each disper-
sion relation and shall outline how they can be calcu-
lated, leaving the details for a further paper.

Let us first consider Eqs. (2.11) and (2.16), which
were used in obtaining the unitarity condition (3.9) /or
(3.18) for nucleons with spinj. Even if these dispersion
relations are written with subtraction terms, it is found
that (3.9) is unchanged, so that the subtraction terms
are only needed in the Anal evaluation of A from A2 and
Aa by means of (2.11), or of Ai from A» and A» by
means of (2.16). The number of subtractions will de-
pend on the behavior of A ~~, A ~3, A2, and As, as calcu-
lated by our procedure, as s. and t tend to infinity —we
shall have to perform at least enough subtractions for
(2.11) and (2.16) to converge.

It is dificult to make an estimate of the behavior of
these functions at infinite values of s. and t from the
equations determining them, and we shall use indirect
arguments which, though not rigorous, are very plau-
sible, We shall find that, if the coupling constant is

small enough, the functions tend to zero at in6nity,
so that one can write the dispersion relations without
any subtractions. For larger values of the coupling
constant, more and more subtractions will be needed.
The reader who is prepared to accept this may omit
the following two paragraphs.

We consider only the first iteration, since subsequent
iterations proceed in a similar way and the results are
unlikely to be qualitatively diGerent. The result can
then be expanded in a perturbation series. If the solu-
tions obtained for this problem by other methods, such
as the Tamm-Dancoff or Bethe-Salpeter methods, are
expanded in a perturbation series, it is found that the
series for each angular momentum state converges as
long as the coupling constant is within a certain radius
of convergence, and that this radius of a convergence
tends to infinity with the angular momentum. " Our
perturbation series would be different from the per-
turbation series obtained by these methods, partly
because the intermediate states with pairs which we
include are not the same as those included by either of
them, and partly because, in calculating the subtraction
terms (other than those at present under discussion),
we shall not take into account terms corresponding to
all graphs included by these approximations. Such
differences would not be expected to affect qualita-
tively the convergence properties of the angular
momentum states, and we shall assume that the results
quoted above are true for our perturbation series too.

The transition amplitude for the state of total angular
momentum j and orbital angular momentum j~—,

' can
be shown to be

pl pl
f;~= ds a(s,s)P;~, (s)+ ds b(s,s)P,p, (s), (4.1)J,

where a and b are the functions defined in (3.15) and

(3.16). Now it is easily seen that each term in the
perturbation series for a2(s,s), a3(s,s), b2(s, s), and b3(s,s)
tends to zero like 1/s as s tends to infinity, so that the
dispersion relation (2.11) for each term can be written
down without any subtractions. Hence

t

a2'"' (s,s') +a3'"' (s,s')
f ~&"& = ds ds' P,g;(s)J, S S

by
"& (s,s')+b3&"& (s,s')

»+:()
~

(42)

= tds'(I a2'"'(~ s')+as'"& (~ s')34 ~+:(s')

+Lb '"'(~,s')+b3'"'(~, s') 3& +:(s')), (4 3)
'6 Note that the "potential" in the Tamm-Danco6 or Bethe-

Salpeter equation involved includes only the crossing term and
not the direct term, whjch has stjlt to be brought into the
ca].cuf@tj.on,
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where

&-(s)
P (s')= ds

s' —s

=1/s™+1 as s'~ ~.
(44)

Let us suppose that the value of the coupling constant
is such that the perturbation series for states of angular
momentum j& converges. If each term in the perturba-
tion series for this angular momentum state is ex-
pressed by (4.3), and if we assume that we can inter-
change the order of summation and integration, we
arrive at the equation

f i~ —— ds'{P La &"&(s,s')+a3~"&(s,s') jygi+, (s')

+Z [f'2 (~ s )+~3 (~ s )34'&i% (s ))' (4'3)

"We should emphasize that it is only in the first iteration that
we relate the number of subtractions needed to the convergence
of the angular momentum states. We say nothing at all about the
convergence of the perturbation series in subsequent iterations,
but assume simply that the behavior of the spectral functions at
infinite values of s is not likely to be qualitatively different from
thejr behg, vjor jn the erst jteratjon,

In order for the integrand to exist, we see from (4.4)
that e and b must be smaller than s" ' at infinite s.
The dispersion relations can therefore be written down
with not more than j——, subtractions. In particular, if
the coupling constant is small enough the dispersion re-
lations can be written down without any subtractions. '

If the coupling constant is such that e subtractions
are required, the unitarity condition for the states of
angular momentum —', to e——,

' will have to be applied
separately. The wave functions for these states are
polynomials of degree not greater than e—1 in the
variable s (or s, and t), and are not determined from the
absorptive parts in the dispersion relations (2.11) and
(2.16).

The calculation must be done after each iteration, as
the result will be needed for the next iteration. The
details of the calculation will not be discussed here,
but they will in principle be similar to those of Chew
and Low' and Dalitz, Castillejo, and Dyson, ' and will
involve considering the reciprocal of the scattering
amplitude. The analytic properties of the individual
angular momentum states are not as simple as in the
static theory, but they can be determined from the
assumed analytic properties of the transition amplitude,
and, as in the static theory, the singularities not on the
positive real axis can be found from the previous
iteration.

The precise number of subtractions required cannot
be determined without calculating the result, but it is
almost certainly not less than two. It is dificult to see
how the observed resonant behavior of the I'; state
could be reproduced by means of the calculations de-
scribed in the last section, whereas it follows quite

naturally from a Chew-Low-type calculation. If the
coupling constant were large enough to bind the (3,3)
resonance state, and for a certain range of values of the
coupling constant below this, we would definitely have
to perform two subtractions. The precise range involved
is difficult to determine, but it would be expected to
include those values of the coupling constant for which
the (3,3) state still has the appearance of an unstable
isobar. Until we state otherwise, however, we shall
suppose that the coupling constant is sufFiciently small
for the functions A(s, s) and B(s,s) to tend to zero at
infinite s, as the situation with regard to the other
subtractions is much simpler in this case. Even then,
we would have to perform one subtraction for each of A
and 8, since the calculations of the previous section
did not include the pole of the scattering amplitude
from the one-nucleon intermediate state; only the pole
in the crossing term was included. The pole affects the
states with j=—,

' alone, so that, if we apply the uni-

tarity condition for these states separately by the
Chew-Low method, we can include it correctly. We
thereby change A and 8 by a quantity independent of z.

When we calculate the scattering amplitudes for the
states with j=—'„we find a ghost state in the first
iteration, just as in all other models. In subsequent
iterations, however, where the crossing terms con-
tribute, it does not follow from the form of the equations
that we shall necessarily find a ghost state, and, judging
from the charged scalar model, we may hope that the
ghost state does not in fact occur.

We now turn to consider the subtraction terms in the
other dispersion relations used in the calculations, Eq.
(3.11). By putting the h-function contribution to A,
into (3.18), it can be seen that the lowest order term
in A»(s, t) tends to a constant as s tends to infinity,
whereas the lowest order term in Bia(s, t) behaves like
1/s. For a certain range of values of t, only the lowest
order term contributes to A~3 and 8~3, so that there
will certainly be one subtraction in Eq. (3.11b) for A, ,
while the equation for 83 could be written down without
any subtractions. We find similarly that both A»(s, s,)
and B»(s,s.) tend to zero like 1/s as s tends to infinity.
It would therefore appear that the dispersion relations
(3.11a) did not require any subtractions. However, we
have seen that Ai(s, s,) and Bi(s,s,) behave like a con-
stant for large s, with s constant, even for small values
of the coupling constant, so that, by crossing sym-
metry, A&(s,s.) and B2(s,s.) will behave like a constant
for large s. There will therefore be one subtraction
term in Eqs. (3.11a) for both A2 and B2.

The determination of the subtraction terms in Eq.
(3.11a) is not difficult, since the contributions to A&

and B& from the states with j=2 (with the energy s,
of the reaction II kept constant) can be found by
crossing symmetry from the corresponding contribu-

tions to A~ and Bj in the previous iteration. However,

for the subtract&on terms in Eq. (3.11b), we require
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the unitarity condition for A3, which involves the re-
action III. As there is one subtraction, only the S
waves will be involved. Again we have to limit the
intermediate states considered; in this 6rst approxima-
tion we would consider the two-meson states ("two-
meson approximation") and perhaps the nucleon-
antinucleon intermediate states ("two-meson plus pair
approximation") as well. We shall then require the
meson-meson scattering amplitude (and the nucleon-
antinucleon scattering amplitude if nucleon-antinucleon
intermediate states are being considered). The deter-
mination of these scattering amplitudes would be as
extensive a calculation as the determination of the pion-
nucleon scattering amplitude, but neglect of the crossing
term would probably not give rise to too great an error in
our final result, in which case the S-wave amplitudes
could be written down immediately in the two-meson
or two-meson plus pair approximations. The meson-
meson coupling constant is thereby introduced into the
calculation, as has been mentioned in the introduction.
Once the meson-meson and nucleon-antinucleon scat-
tering amplitudes are known, the transition amplitude
for the reaction III can be calculated. Since the integral
equation is now linear, the details will be diGerent from
those of the Chew-Low calculations, but, as in their case,
the solution could be written down exactly if there
were no other singularities of the transition amplitude,
and we can use an iteration procedure for the actual
problem. The iterations will again be interspersed
between the iterations of the main calculation. The
S-wave portion of A3, as calculated by this procedure,
will be nonzero for /) 4p', so that the scattering ampli-
tude now has the expected spectral properties. The
boundaries of the regions in which the spectral functions
are nonzero will thereby also be changed; this will be
discussed in more detail at the end of the section.

Ke have seen that, as long as the coupling constant
is su%ciently small, we require one subtraction for each
of the dispersion relations except the dispersion relation
(3.11b) for Bs, for which we do not require any sub-
tractions. It is also easily seen that this behavior is
consistent —the functions as calculated in the last sec-
tion, with the calculations modified by the subtraction
terms, will not at any stage become too large at infinity.
If, however, one were to make any additional subtrac-
tions, one would find that, on performing the calcula-
tions, one would need more and more subtractions as
the work progressed, and one could not obtain any
final result. The number of subtractions to be per-
formed is therefore determined uniquely. There is one
exception to this statement: we could perform one
subtraction in Eq. (3.11b) for Bs. Such a subtraction is,
however, excluded by the requirement that the theory
remain consistent when the interaction with the electro-
magnetic 6eld is introduced. If one were to make this
subtraction, the scattering amplitude would behave
like f(t)y(qt+qs) for large values of s. It then follows

from gauge invariance that the matrix element for
the processes

~++ts —+s.++rs+v or s-'+p —+rrs+p+r

will contain a term which behaves like f(1)y for large s,
where t is now minus the square of the momentum
transfer of the neutral particle. "The contribution to
B~ and 8~3 from the x—N —y intermediate state
therefore tends to infinity at least as fast as s for infinite
s, so that one would require two subtractions for the
dispersion relation in question and the theory would
not be consistent.

Since the unitarity conditions for the two j= —, states
of the pion-nucleon system, and for the S state of the
pion-pion system, have to be applied separately by the
Chew-Low method, there will be Castillejo-Dalitz-
Dyson ambiguities associated with these states. The
ambiguities will of course affect all states in subse-
quent iterations. They correspond to the existence of
unstable baryons of spin —,

' and either parity, or of
heavy unstable mesons of spin zero. There are no
ambiguities associated with states of higher angular
momentum; this is in agreement with perturbation
theory, according to which it is impossible to renor-
malize systems containing particles of spin 1 or more.
Had there been no interaction with the electromagnetic
field, we could have introduced a further subtraction
term which would have necessitated a separate applica-
tion of the unitarity condition for the I' state of the
pion-pion system. The resulting Castillejo-Dalitz-Dyson
ambiguity would have been associated with a heavy
unstable meson of spin 1. This corresponds to the
Bethe-Beard mixture of vector and scalar mesons, which
can be renormalized in perturbation theory as long as
there is no interaction with the electromagnetic field.

Now let us consider the situation that occurs in
practice, when the coupling constant is sufficiently
large for the scattering amplitude and its absorptive
parts to tend to infinity with s (or s, and 1) when s
remains constant. The function A~2' which, according
to our procedure, must be added to A~2 in iterations
other than the first, will now tend to infinity with s,
so that As, as calculated from (3.11a), would show a
similar behavior. In practice, when the unitarity con-
dition for states with j= 2 as well as with j=-,' must be
applied separately, A»'(s, s.) and A»(s„1) will tend to
infinity faster than s or t, and the dispersion relation
(3.11a) will require two subtractions. The subtraction
terms can be determined by crossing symmetry as
before. However, we have seen that, if A2 tends to
infinity with s, we cannot consistently perform the
calculation, so that we shall have to introduce some
further modifications.

The reason for the difficulty is probably the in-

' This can be shown by using a generalization of the Ward
identity due to H. S. Green, Proc. Phys. Soc. (London) 66, 873
(1953), and T. D. Lee, Phys. Rev. 95, 1329 (1954), and proved
by Y. Takahashi, Nuovo cimento 6, 372 (1957).
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FIG. 4. Graphs involving the pion-pion interaction.

adequacy of the one-meson approximation. The break-
down occurs just at the value of the coupling constant
for which the contribution to the scattering amplitude
from A ~2' is comparable to the remainder of the scatter-
ing amplitude when s is large. Since that part of A~
calculated from A~2' represents a partial eGect of states
with one or more pairs, the contribution of these inter-
mediate states is now important at high energies and
it seems reasonable that, if one could take them into
account properly, one could still perform the calcula-
tions for large values of the coupling constant. In the
one-meson approximation, one would have to make
some sort of a cuto6' to the contribution to A2 from the
crossing term above s=9M'. As this entails modifying
the unitarity condition in the region where it is in any
case inaccurate, it is consistent with our approxima-
tions, and it may be hoped that the theory is not very
sensitive to the precise location and form of the cutoff.
If one were to go to further approximations in which
intermediate states with pairs were included, the cuto8
would always be applied only at or above the threshold
for processes which were neglected.

Once we are prepared to introduce cutouts into our
approximations, we might legitimately ask whether or
not we should perform more than one subtraction in
Eq. (3.11b). This could only be determined by ex-
amining the behavior of the scattering amplitude and
its absorptive parts at large values of s when we go
beyond the one-meson approximation. However, if A
and 8 have the behavior assumed thus far (A remains
constant and 8 behaves like 1/s), the cross section
would tend to zero like 1/s at large s, whereas the ex-
perimental results indicate that the cross section re-
mains constant. It therefore may be necessary to per-
form an additional subtraction and to introduce the
unitarity condition of the reaction III in I' states.

At erst sight it would seem as though there were
Castillejo-Dalitz-Dyson ambiguities associated with all
states for which the unitarity condition has to be
applied separately, not only with the j=—', states.
However, it is also possible that only the solution
without any of the extra terms in the higher angular
momentum waves would converge as we introduced
more and more states into the unitarity equations. This

16''(s—M'+ p')'
~ia=

Ls—(M+y)')Ls —(M—p)'j
(4.6)

For any given value of s, A» will be nonzero if t) t&,.
We notice that, as s tends to inhnity, 3& approaches the
value 16p'. This is not the expected result —we have
shown in Sec. 2 that it should approach the value 4p'.
The reason for the discrepancy is that, in our approxi-
mation, the reaction III takes place purely through 5
waves for 4@~&/(16p2, and A3 will be a function only
of f in this region. Had it been possible for the reaction
III to go through an intermediate state of one pion,
A 3 would have had a 5 function at t =p,', and, on putting
this value into (3.12a), we would have obtained the
expected result. As it is, however, we shall have to go
beyond the one-meson approximation to get the correct
boundary of A».

The reaction %+X—+ 3~ can go through a one-pion
intermediate state by means of the process represented
in Fig. 4(a). If, therefore, we treat the outgoing pions
in the reaction cV+m —&X+2m as one particle with fixed
energy and angular momentum, and represent the tran-
sition amplitude in the same way as we have represented
the transition amplitude for pion-nucleon scattering, the
absorptive part corresponding to A 3 will have a 6 function
at t= p'. We can work out the resulting contribution
to A» (of the pion-nucleon scattering ™plitude) by
unitarity in the same way as we worked out the con-
tributions from the one-meson approximation. s2 and
s3 in Eqs. (3.4)—(3.8) will now refer to the center-of-
mass deflection of the nucleon in the production re-
action, and will be connected with the momentum
transfer by the relation

s= (C'+V '+' —
I (M'+V')'* —(M'+V ')'3')/2+i

where g~, is the center-of-mass momentum of the out-
going nucleon. The value of q~ will depend on the rela-
tive energy of the two pions; we shall require the
maximum value of qi (for a Axed s), which occurs when

solution would be an analytic continuation of the
solution obtained for small values of the coupling con-
stant, whereas the other solutions could not be con-
tinued below a certain value of the coupling constant
and would have no perturbation expansion. While we
can by no means exclude such a behavior, it neverthe-
less gives us grounds to suppose that the ambiguity
exists only for meson-nucleon states with j=-,'and for
S-wave meson-meson states, even when the coupling
constant is large.

Before leaving this section, let us state the boundaries
of the region in which the spectral functions A», A ~3,
and A ~~ are nonzero, i.e., the position of the curves
C»p C23 and C~2 in Fig. 1. Since A3 is now nonzero for
t') 4p'-, C» in the one-meson approximation is ob-
tained by putting ~2= t3=4@' in (3.12a), so that

ti, =4@(1+@'/q')-,
01
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Sc2 Sc2aq (M+p)'& $& (M+2@)'
(4.10)

=min($, 2„$,2q), (M+2IJ)"&$& co,

where
$' —$(3M'+2y')+2 (M' —p')'

($,p,—m)'=2p,
[$—(M+@)'][$ (M—I)']—

[M $ (M2 p ) ][$2$(M +3@2)+(M2 —p2)2]

$[$—(M+~)']L$ —(M—~)']
(4.11)

$,2b($) =$($,2,). (4.12)

The equation s,=s,» represents in fact the boundary
of the region in which A~~' is nonzero. We observe that,
once the pion-pion interaction has been included, this
region approaches asymptotically the line $= (M+2y)'
rather than the line s= 9M'. The reason is that processes
represented by graphs such as Fig. 4(b) are now in-
cluded in our approximation, so that the crossing term
will include the contribution from Fig. 4(c), the inter-
mediate state of which involves a nucleon and two pions.

For a given real value of s, the absorptive part A
of the scattering amplitude will be an analytic function
of the momentum transfer as long as

t2&t&tg, (4.13a)

where t& is given by (4.9), and f2 by (4.10) and (2.13).
The expansion in partial waves will converge if

the pions are at rest with respect to one another and
is given by

I -'=($ (M—+2 )'}($ (M— 2~—)')/4$ (4 7)

We then 6nd that the boundary of this contribution to
A» has the equation

4p'($ —M' —2p)'
tabb= (4.8)

[$—(M+ 2@)'][$—(M—2p)']

The curve represented by (4.8) approaches asymp-
totically the lines t=4ii' and $= (M+2+)'. Thus, as
would be expected, this contribution to A» only occurs
above the threshold for pion production.

A» is therefore nonzero for t& t~, where

ti=tia, (M+p)'&$& (M+2@)2;
(4.9)

fl min(ti. ,lib) (M+2p') &$& ~
and t=t& is the curve C~3 of Fig. 1. We cannot be sure
that contributions from other intermediate states will
not extend beyond this curve, but this is unlikely
owing to the greater mass of these states.

The curve C» is obtained from C» simply by chang-
ing s to s,. C» can be calculated in a similar way; we
6nd that

Ke may note 6nally one interesting point concerning
the spectral properties of the scattering amplitude. The
unitarity condition should, strictly, be used in the
physical region only, and the results extended to the
unphysical region by analytic continuation. This has
actually been done for the reaction I, as well as for the
reaction III with t&4M2. For the reaction III in the
region 4p'&t&4M', we should apply the unitarity
condition with the nucleon masses taken, not on the
mass shell, but at some smaller value where all the
momenta wouM be real. The result should then be
continued analytically onto the mass shell. In our case
this is found to make no difference, but if, in addition
to the nucleon, we had a baryon whose mass M&
satisfied the inequality

M '&3P—p' (4.14)

it would be necessary to do the calculation in this way.
On making the continuation to the mass shell, it would
be found that the absorptive part A3 extended below
the limit t'=4@'. It has been shown by several workers"
that, if an inequality such as (4.14) is satisfied, the
vertex function would show similar spectral properties.
The simplest graph to exhibit them in our case would be
Fig. 4(d), which will obviously have properties similar
to those of a vertex graph. It is thus seen that these
spectral abnormalities would not limit the applicability
of our method, but, on the contrary, follow from it.

5. APPROXIMATION SCHEME FOR OBTAINING
THE SCATTERING AMPLITUDE

In the methods developed in the previous sections,
the unitarity condition for the reaction I is satisfied
for all angular-momentum states in the one-meson
approximation. The unitarity condition for the reaction
III is satisfied only for S states in the two-meson or
two-meson plus pair approximations. The unitarity
condition for higher angular momentum states of the
reaction III is not satisfied, but the scattering ampli-
tude shows the expected behavior at the threshold for
competing real processes.

These properties suggest immediately a further
approximation which would be consistent with our
other approximations. The major portion of the work,
and certainly the major part of the computing time,
would be employed in calculating the spectral functions,
as this involves finding double integrals which are
themselves functions of two variables. The calculations
would therefore be simpli6ed if we neglected those con-
tributions to the spectral functions which begin at the
threshold for processes involving more than two par-
ticles. The only contributions to A» and A» left would
be those beginning at t=4M', and they couM be ob-
tained by inserting the 6-function contribution to 8&

—tg —4q~&t&tg,

as t& 4q' is always greater th—an t—2.

(4.13b) Karplus, Sommer6eld, and Wichman, Phys. Rev. 111, 1187
(1958);V. Nambu, Nuovo cimento 9, 610 (1958);R.Oehme, Phys.
Rev. 111, 1430 (1958).
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into (3.18). The spectral function Ai2 would be zero in
this approximation.

The unitarity condition for the higher angular mo-
mentum states of the reaction I is no longer satisfied.
However, the terms neglected appear by their form to
arise from intermediate states of the reaction III with
more than two particles, so that the approximation is
in the spirit of the approximations already made. We
have in fact made precisely this approximation in the
unitarity condition for the S waves of the reaction III.
The unitarity condition for the low angular momentum
states of the reaction I, and in particular for the states
with j=-,' or —,', is still satisfied, as it has been introduced
separately. The present approximation treats the re-
actions I, II, and III on the same footing.

To summarize, then, our method of procedure will

be the following: The first few angular rnornentum
states of A~ and A3 are found on the assumption that
each angular momentum state is an analytic function
of the square of the center-of-mass energy except for the
perturbation singularities and the cuts on the positive
real axis. This calculation can be done exactly if the
discontinuity across the cut along the positive real axis
is determined by unitarity (complications arise, as the
relations connecting a and b with A and 8 involve
square roots of kinematical factors, but the methods
can be modified accordingly). Ai3 and A» are also found
as just described. The analytic properties of the low
angular momentum states are now determined from the
analytic properties of the scattering amplitude given by
(2.12). The singularities can be calculated in terms of
A~, A2, A3. These absorptive parts can in turn be
found from A» and A» by means of the dispersion rela-
tions (2.16), (2.17), (2.19), with subtraction terms
which can be obtained from the low-angular-momentum
states. In the next iteration, all the singularities of the
low angular momentum states except that along the
positive real axis are found from the quantities calcu-
lated in the first iteration, and the singularity along the
positive real axis is redetermined from the unitarity
condition. The iteration procedure is repeated until it
converges. As in the calculations of Sec. 4, it is found
necessary to cut oG the absorptive parts A&, A2 and A&

at high energies, before calculating the singularities of
the low angular momentum states in the next iteration.
However, the cutoff is only applied above the threshold
for processes neglected in the unitarity condition, and
in particular, above the threshold for pair production in
the reaction I.

This approximation could be regarded as the erst of
a series of approximations in which more and more of
the contributions to the spectral functions are included,
until we ultimately reach a solution in which the unitar-

ity condition in the one-meson approximation is satisfied
for every angular momentum state. In the higher ap-
proximations the spectral functions are no longer deter-

mined by perturbation theory, but, once the contribu-
tion from the crossing term enters, they will have to
be recalculated after each iteration. However, it would
be more worthwhile to go beyond the one-meson
approximation at the same time as we took the higher
contributions to the spectral functions into account.
In other words, we continue to put the reactions I, II,
and III on the same footing, bringing in the higher
intermediate states of all three together. If the approxi-
mation scheme converged, the exact unitarity condition
of the three reactions would finally be satisfied for all
angular momentum states. Needless to say, one would
not in practice be able to go beyond the first one or two
approximations.

The number of angular momentum states for which
the unitarity condition is applied separately will, as
has been explained in the last section, depend on the
behavior of A and 8 as ~ (or s,) tends to infinity with s
constant. However, in our first approximation, it
should be sufficient to treat separately only states with
j=-,' and j=~, as the other angular momentum states
will not be important below the threshold for pion
production. If we went beyond the one-meson approxi-
mation we would probably have to treat some higher
angular momentum states separately in any case, since,
for instance, two pions both in a (3,3) resonance state
with a nucleon could form a D; state. For reaction III,
one would have to treat separately S states and possibly
I' states as well.

If one neglected the nucleon-antinucleon intermediate
state in the reaction III and only took the two-pion
intermediate state into account, all three spectral func-
tions A», A», and A» would be zero, since they all

begin above the threshold for processes which are
being neglected. The entire scattering amplitude would
then consist of "subtraction terms" for one or other of
the dispersion relations. This may be the best first
approximation from the point of view of the amount
of work required and the accuracy of the result, as the
nucleon-antinucleon intermediate state is a good deal
heavier than multipion states which are being neglected.
Though the spectral functions are not now brought in
at all, it will of course be realized that the only justifi-
cation for the approximation is that it is the first of a
series of approximations which do involve the spectral
functions. In this approximation, if the crossing term
is neglected in the calculation of the pion-pion scattering
amplitude, only intermediate S states occur in reaction
III, so that the unitarity condition for the I' states will

not enter.
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